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ABSTRACT

We propose a computer-efficient and accurate method of estimating spatially correlated errors in astrometric
positions, parallaxes, and proper motions obtained by space- and ground-based astrometry missions. In our method,
the simulated observational equations are set up and solved for the coefficients of scalar and vector spherical
harmonics representing the output errors rather than for individual objects in the output catalog. Both accidental and
systematic correlated errors of astrometric parameters can be accurately estimated. The method is demonstrated on
the example of the JMAPS mission, but can be used for other projects in space astrometry, such as SIM or JASMINE.
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1. INTRODUCTION

Projects in global space astrometry, such as Hipparcos (ESA
1997), Gaia (Perryman 2003), SIM (Unwin et al. 2008), or
JMAPS (Gaume 2011), result in very large systems of observa-
tional equations, which contain the unknown parameters of in-
terest, as well as an even larger number of instrument calibration
and satellite attitude parameters. The structure of this system de-
pends on the architecture of the mission, adopted schedule of
observations, and properties of the instrument. In its most gen-
eral matrix form, a linearized observational equation of space
astrometry is

A a + C c + P p = y, (1)

where the three main types of unknowns are separated, namely,
the astrometric parameters a, the calibration parameters c,
and the attitude parameters p. The measurements collected
during the on-orbit operation are involved in the right-hand side
y of the observational equations. These measurements include
accidental and systematic errors. The accidental error arises
from a completely stochastic, unpredictable process and occurs
spontaneously in each observation, independent of the previous
or subsequent observations, for example, photon shot noise in
the incoming light signal. The systematic error has a certain
deterministic cause, such as a particular state of the instrument,
and may in principle be avoided or mitigated by setting adequate
requirements for the mission design and the instrument. The
problem we consider is how to calculate the propagation of
accidental and systematic errors in the astrometric solution in
the general case. In particular, we are concerned about the
occurrence of correlated and zonal errors in the resulting proper
motions and parallaxes.

In this paper we consider the position-correlated part of the
total absolute error of an astrometric catalog or reference frame.
It can be visualized as a smooth pattern in the distribution of
the absolute “observed minus true” error on the celestial sphere.
The actual distribution of absolute error is sampled on a discrete
set of objects (e.g., stars and quasars), so that the uncorrelated
part will look like discrete noise, but if a smoothing procedure
is applied to this sampled function, the underlying large-scale
pattern will emerge. This smooth pattern will be stochastic, i.e.,

unpredictable, if it is caused by the accidental errors of the
measurements, or deterministic, and therefore predictable, if it
is caused by a systematic measurement error. In reality, any
catalog produced by a space mission will include a mixture of
accidental and systematic errors. The goal of a well-designed
astrometric mission is to keep the systematic error smaller than
the accidental error. However, an external catalog of superior
accuracy is usually required to verify that this goal is achieved.
For example, a comparison of the Hipparcos catalog with the
FK5 system of 1535 reference stars revealed zonal errors in the
latter that were larger than the estimated accidental error per
star (Mignard & Frœschlé 2000). The type of large-scale errors
considered in this paper is different from the accumulated small-
scale errors, which originate in the shared attitude error for stars
observed within the same field of view (or the same scan for
a scanning mission; van Leeuwen 2007). The details of such
an accumulation of small-scale error in the in-scan direction
for scanning missions is highly dependent on specific mission
implementation and must be modeled separately on a case-by-
case basis.

The smoothness of spatially correlated large-scale errors in-
vokes the use of spherical orthogonal functions for their repre-
sentation and analysis. A parallax error is a scalar function of
spherical coordinates, and is best described by scalar spherical
harmonics. Proper motion and position errors are tangential vec-
tor fields on the unit sphere, and should be properly represented
by vector spherical harmonics. Spherical harmonics are basis
functions, therefore, any smooth function of coordinates can be
accurately decomposed into a linear combination of a sufficient
number of spherical harmonics. Some of the spherical harmonic
terms correspond to specific physical parameters. For example,
the zero-order scalar spherical harmonic of parallax is a con-
stant function (unity) on the sky. This term is the well-known
parallax zero point. The zero point is the average of all absolute
parallax errors of a given catalog, which is different from zero.
This common type of error is of special significance in astrom-
etry, because it directly affects the cosmic distance scale based
on trigonometric parallaxes. A common offset of parallaxes is
relatively more important for distant objects, hence, the empir-
ical calibration of mostly distant calibrators such as Cepheids
or RR Lyrae-type stars is especially vulnerable to a zero-point
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error. All higher-order harmonics do average to zero on the
sphere and have a more localized effect. As another example of
coupling between physical parameters and specific large-scale
errors, the Oort’s parameters describing the differential rotation
of the Galaxy are represented by certain vector spherical har-
monics of the proper motion field (Makarov & Murphy 2007).

One might naively assume that random uncorrelated noise
in the observational data results in a uniform distribution of
error among the different types of zonal error, i.e., in a flat
spherical harmonic spectrum. In fact, this is never the case, as
the mode of operation, the geometrical order of observation, and
the finite field of view of the telescope, all lead to a strongly non-
uniform propagation of observational noise in different orders of
correlated error. The technique presented in this paper goes back
to the idea of using orthogonal functions for the analysis of one-
dimensional “abscissae” errors of the Hipparcos mission (for the
definition of abscissae, see ESA 1997, Vol. 2). The concept of
Hipparcos was built around a stable and self-calibrating basic
angle separating the two viewing directions of the telescope.
Hoyer et al. (1981) suggested that the problem of propagating
perturbations of the basic angle becomes tractable if these
perturbations are represented by a Fourier series. Using this
idea, Makarov (1992) showed that Fourier time-harmonics of
the basic angle propagate with uneven magnification coefficients
into the corresponding harmonics of star abscissae, with the
60 deg-harmonic being the dominating one in the output. The
reason for this peculiar propagation of white noise is the value
of the basic angle, which is close to 60 deg. The technique was
further developed and applied to the Rømer project3 by Makarov
et al. (1995). The propagation of periodic perturbations of star
abscissae into specific spherical harmonics of absolute error is a
more complicated issue, which depends on the scanning law and
the geometry of reference great circles. This generalization was
implemented for a Hipparcos-like design by Makarov et al.
(1998), where the two-dimensional errors of parallax were
represented by spherical harmonics. Using an orthogonal basis
of functions on the unit sphere puts the concept of absolute
astrometry on a rigorous mathematical footing. The proposed
JMAPS and SIM missions, unlike Hipparcos and Gaia, employ
only one viewing direction (Zacharias & Dorland 2006). The
emergence of correlated errors in these projects is defined by
the density of overlapping observational frames and the accuracy
of quasar constraints.

2. OBSERVATIONAL EQUATIONS AND
QUASAR CONSTRAINTS

Linearized observational equations of global astrometry re-
late astrometric parameters of interest, satellite attitude pa-
rameters, and instrument calibration parameters to astrometric
observable parameters. Although the actual relations between
these parameters are nonlinear, the required linearization can be
achieved by taking the perturbation form and limiting the Taylor
expansions on the left-hand side of the equations to first order. If
the initial guess or prior knowledge of the fitting parameters is
close to the truth, this first-order approximation provides an ac-
curate solution; otherwise, the linearization and global solutions
have to be iterated.

A common property of all proposed space astrometry projects
is that most of the nuisance parameters (e.g., calibration and atti-
tude) entering the observational equations should be determined

3 The Rømer concept was the precursor of the Gaia mission.

from the same observations along with the star parameters.
Essentially, an instrument for space astrometry is self-
calibrating and self-navigating. Some of the crucial parame-
ters, e.g., the basic angle for Hipparcos, the baseline length
for SIM, are stable by engineering requirements; they should
be re-determined relatively infrequently during the mission. By
contrast, the attitude parameters are unique for each astromet-
ric frame or scan, and therefore generate the bulk of nuisance
parameters. The Euler angles (or quaternions) of spacecraft
attitude are approximately known from the navigation system,
including a separate star tracker device, but much more accu-
rate values of these parameters are determined from the main
observations themselves (Lim et al. 2010).

It was shown on the example of the SIM project that coupling
between the attitude unknowns and the astrometric unknowns
can cause a loss of condition and a non-uniform propagation
of errors in a global solution (Makarov & Milman 2005).
A strict relation exists between the basis vectors of parallax
distribution, obtained by the singular value decomposition
(SVD) of the corresponding part of condition equations, and
the scalar harmonics sampled on a discrete set of stars. The
reciprocal singular values are simply the coefficients of different
degrees and orders of error, propagating into the final parallax
solution. By virtue of the relatively small size of the design
matrix, the SIM grid solution was ideally suited for rigorous
mathematical analysis of various aspects of error propagation.
Other astrometric missions invoke much larger least-squares
(LS) problems, and SVD analysis becomes intractable. In this
paper, we are setting out to develop a numerical method to
estimate the propagation of large-scale correlated errors in very
large LS solutions.

In the perturbation form, the unknowns in Equation (1)
are small corrections to a priori parameters describing the
stars and the state of the instrument, and y is the vector
of small differences between the predicted and the actual
measurements. The grand design matrix can be constructed,
in principle, from the individual blocks A, C and P, although
it is never done in practice because of its huge size. The
standard method of solving such problems is block adjustment
(e.g., von der Heide 1977), using the natural sparsity and
structure of the design matrix. Briefly, there have been two
algorithms considered for large astrometric problems, iterative
block adjustment and the global direct solution (Bucciarelli
et al. 1991). Hipparcos, the only implemented astrometric
space mission thus far, relied on iterative adjustment in which
the major blocks of unknown parameters were estimated and
updated in turns while keeping the other types of parameters
fixed, resulting in a number of iterations across the range
of mission parameters. The convergence of the large-scale
iterations cannot be taken for granted, but should be verified
by dedicated simulations. A similar algorithm of iterative block
adjustment has been developed for the Gaia data analysis system
(Lammers et al. 2010). On the mathematical grounds, a global
adjustment, which is a simultaneous, one-step solution for the
multitude of mission parameters, should be more exact, faster
and easier to analyze, but it poses a considerable implementation
challenge for huge LS problems with a large number of
nonzeros.

The block structure of the grand design matrix is defined
by two different types of dependencies of the unknowns.
The astrometric unknowns a are object-dependent, i.e., they
comprise independent sets of several unknowns for each object.
Five astrometric unknowns per star are usually considered,
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namely, position components and parallax and proper motion
components. The calibration unknowns c and the attitude p are
mostly, but not exclusively, time-dependent. If the observational
equations are sorted by time, the nonzero elements of the design
matrix corresponding to the attitude unknowns are found in tight,
relatively small blocks, because the attitude of an astrometric
instrument is fast-varying. The calibration parameters can be
discretized too, so that a separate set of calibration unknowns
is assigned to a fixed interval of observations, which we
will call a calibration block in this paper. The calibration
parameters are expected to change slowly with time. Therefore,
the corresponding blocks of nonzero elements are longer that
the attitude blocks. It is convenient to adjust the discretization
steps in such a way that the boundaries of the blocks are aligned,
so that an integer number of attitude blocks corresponds to each
calibration block. The astrometric unknowns in such a design
matrix are scattered across its entire length, because the same
object is observed multiple times during the mission.

It is sometimes practical to eliminate the attitude and cali-
bration unknowns in the equations rather than solve for them
directly along with the astrometric unknowns. This elimination
is achieved by the QR factorization of each block and the subse-
quent QT orthogonal transformation of the remainder of the de-
sign matrix and the right-hand side of the equations, as described
in (Makarov & Milman 2005). Because of the nested structure
of the blocks, the elimination procedure becomes hierarchical,
the smaller attitude blocks being eliminated first followed by
the calibration blocks. As a result, the number of unknowns
is significantly reduced. However, this reduction comes at a
cost, because the design matrix becomes much denser. Obvi-
ously, nonzero off-diagonal elements are generated for any pair
of objects, which were observed within the same calibration
block. The degree of densification depends on the average num-
ber of objects within a calibration block. To avoid intractably
dense matrices, smaller calibration partitions are preferred. In
the JMAPS global solution, several large-scale calibration pa-
rameters are solved for each frame, along with the three attitude
unknowns. In that case, the direct LS solution is obtained for
about 29 million unknowns with 1 million grid objects, or 34
million unknowns with 2 million grid objects. After the QR
elimination, only 5 or 10 million unknowns remain, respec-
tively, but the design matrix is much denser. The number of
equations to be solved is 144 or 288 million, respectively. Our
idea presented in this paper is that in many cases, it is suffi-
cient to consider the correlated errors of the simulated mission,
rather than the individual errors of numerous grid objects. This
strategy helps to reduce the number of astrometric unknowns to
manageable levels, fully capturing an important characteristic of
mission performance. The mathematical technique is described
in Sections 2.1 and 2.2.

2.1. Spherical Harmonics

The astrometric part of observational equations can be written
as

(δs0 + δμ(t − t0) + δ� ((s0 · b) s0 − b)) · τ = y, (2)

where δs0 and δμ are the unknown corrections to mean position
and mean proper motion at t0, tangential to the celestial sphere
at s0, which is the assumed position unit vector of the objects at
time t0, δ� is the unknown correction to parallax, and b is the

position vector of the spacecraft with respect to the barycenter
of the solar system at the time of observation t, assumed to be
known. The vector τ is a certain fiducial direction defined by
the instrument, for example, the baseline vector of SIM, or the
nominal scanning direction of Gaia. This vector depends on the
instantaneous attitude and the calibration parameters, but here
it is assumed to be known, because all the nuisance parameters
have been separated in the linearized equations into independent
blocks. For a two-dimensional pointing mission such as JMAPS,
two condition equations emerge from a single observation, since
there are two fiducial directions in the focal plane, corresponding
to the rows and columns of the detector array. The right-hand
side of Equation (2) includes the measurement and additive
accidental and systematic errors.

The astrometric condition equations are linear and can be
solved by direct LS with or without elimination of the nuisance
parameters. The main technical problem arises from the size of
the normal matrix, which requires supercomputing facilities and
advanced algorithms. For Gaia, the size is so large that a direct
LS solution is deemed impossible, and the adopted iterative
solution still takes a long time (O’Mullane et al. 2011). Solving
directly for up to 34 million unknowns has been proven feasible
with a specially adapted PARDISO solver (PARallel DIrect
SOlver, part of the Intel Math Kernel Library), but it still takes
several hours of computing time to complete. For the testing and
verification purposes, full-scale runs of the global solution have
to be performed multiple times, with various input data. Our
idea presented in this paper is that in many cases, it is sufficient
to consider the distribution of error on the sphere, rather than
individual errors of numerous grid objects. Thus, we substitute
the object-dependent astrometric unknowns in Equation (2) with
the expansions in spherical harmonics, which are functions of
celestial coordinates, e.g., the ecliptic coordinates λ and β:

δs0 =
∞∑

j=1

Sj V(λ, β) position

δμ0 =
∞∑

j=1

Mj Vj (λ, β) proper motion

δ�0 =
∞∑

j=1

Qj Uj (λ, β) parallax (3)

with Uj being the scalar spherical harmonics and Vj the vector
spherical harmonics. For a detailed description of spherical
harmonics see, e.g., (Makarov & Murphy 2007). Here we only
reproduce some basic formulae. The vector harmonics Vj are
composed of two types of functions, called magnetic and electric
harmonics, Hm

n and Em
n , respectively. These vector harmonics are

derived via partial derivatives of the scalar spherical harmonics
over angular coordinates, viz.:

Hm
n (λ, β) =

[
∂Um

n (λ, β)

∂β
�τλ − 1

cos β

∂Um
n (λ, β)

∂λ
�τβ

]

Em
n (λ, β) =

[
1

cos β

∂Um
n (λ, β)

∂λ
�τλ +

∂Um
n (λ, β)

∂β
�τβ

]
. (4)

The pair of vectors {τλ, τβ} define the local tangential coordinate
system in the plane orthogonal to s0, directed north and east,
respectively. Spherical harmonics Um

n are counted by degrees
n = 0, 1, . . . and orders m = −n,−n + 1, . . . , n. Explicitly,
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Figure 1. Magnetic vector spherical harmonic H−1
1 .

Um
n =

√
2n + 1

2π

(n − m)!

(n + m)!
P m

n (sin β) cos mλ, m > 0

=
√

2n + 1

4π
P 0

n (sin β), m = 0

=
√

2n + 1

2π

(n − |m|)!
(n + |m|)! P |m|

n (sin β) sin |m|λ, m < 0,

(5)

where P m
n are the associated Legendre polynomials. The first

pair of vector harmonics is generated from the scalar harmonic
U 0

1 , with the electric component cos β �τβ and the magnetic
component cos β �τλ. The common index j used in Equation (3),
introduced for simplicity, counts all individual harmonics in
the following manner: for each degree n all orders of electric
harmonics are lined up, followed by all orders of magnetic
harmonics. A particular vector harmonic, V6, which is the
magnetic harmonic H−1

1 is depicted in Figure 1. It is equivalent
to a left-handed rotation around the pole at λ = 90◦, β = 0.

2.2. A Direct Solution on a Laptop

The most important advantage of the spherical harmonics
is that they are orthogonal on the unit sphere in the space of
continuous functions, or nearly orthogonal when discretized on
a large set of uniformly distributed points. In the latter case, the
deviation from orthogonality is negligibly small for a sufficiently
large number of grid stars (�104) of uniform density on the sky.
The degree of uniformity and the number of grid stars should
be higher if the higher-order harmonics are to be used in the
direct global solution. Normally, the lower orders of spherical
harmonics are of interest, where the largest correlated errors
emerge. Therefore, the series in Equation (3) can be truncated in
the new condition equations for the fitting coefficients Sj, Mj, and
Qj. The solution for a subset of model terms is exact if the terms
are orthogonal. In practice, the degree of orthogonality should
be verified for a given distribution of stars and weights (in a
weighted LS). Rearranging the discretized spherical harmonics
for the three types of astrometric unknowns as columns of a
design matrix, the unknown coefficients and the right-hand side
data as column vectors, the LS problem can be written in this

compact matrix form:

[Vs Vμ U� ]

[ S
M
Q

]
= y. (6)

The length of the design matrix is still very large in this setup,
because it includes all the observations of grid stars. For JMAPS,
it is about 144 million for 1 million grid stars. The width
of the design matrix, on the other hand, is defined by how
many spherical harmonic terms we want to solve for. Indeed,
a sufficiently accurate solution can be obtained for any subset
of spherical harmonics, as long as the columns of the design
matrix are nearly orthogonal. This is verified by computing the
correlation coefficients of the covariance matrix. They should
all be small, e.g., less than 0.01 in absolute value. If this is the
case, including more terms in the design matrix will not change
the solution for Sj, Mj, and Qj significantly. The number of
unknowns can be made comfortably small for a given computer.
We found, for example, that a global solution can be obtained
within 1 hr for 400 unknowns on a regular laptop computer.

Even with a limited number of unknowns, the design matrix
is too large to be handled in fast memory without swapping
with disk. However, there is no need to keep the entire matrix
in memory if the observations are sorted by time. If the design
matrix D = [Vs Vμ U� ] is divided into a number of blocks Dj

in the vertical dimension (not necessarily of the same length),
the normal matrix is the sum of the normal sub-matrices,
DT D = ∑

j DT
j Dj . The accumulated normal matrix can be

easily inverted due to its relatively small size, resulting in the
covariance matrix, Cov = (DT D)−1. The off-diagonal elements
of Cov should be small due to the near-orthogonality of the
model terms, unless some additional global parameters are
included. The diagonal elements are the variances of unit weight
of the coefficients of spherical harmonics Sj, Mj, and Qj. If the
observations are weighted by the expected standard deviation of
measurement error, the variances are the squares of the standard
errors carried by the corresponding spherical harmonics. The
total mission-average variance is approximately the sum of the
variances of the complete set of harmonics for each of the five
astrometric parameters. Since we obtain the variances for a
limited set of harmonics, the total mission-average error cannot
be inferred from this computation. However, the uncertainty of
specific harmonic components is accurately computed.

3. RESULTS AND DISCUSSION

JMAPS is a pointing astrometric telescope with a single view-
ing direction. Without the ability of Hipparcos to simultaneously
observe stars that are far apart on the sky, the required rigidity
of the reference system and the accuracy of astrometric pa-
rameters is achieved through measuring a number of carefully
selected ICRF and radio-mute quasars and other extragalactic
objects. These objects provide absolute constraints on positions
(using the ICRF coordinates of superior accuracy), parallaxes,
and proper motions, which are negligibly small because of the
extreme remoteness. The entire sky is observed with a fourfold
overlap. Astrometric observations are normally made around
the great circle perpendicular to the direction of the Sun. Some
72 observations per object are expected to be collected in three
years. For the simulations described in this paper, we used a cat-
alog of 44 ICRF quasars and 80 compact extragalactic sources
(QSO), which are not in the ICRF. All these reference quasars
are brighter than magnitude 15. Only a subset of all observable
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Figure 2. Standard deviations of the coefficients of spherical harmonics representing accidental error in (a) proper motions and (b) parallax. The errors are normalized
to unit weight.

stars, usually between 1 and 2 million strong, is used in the
direct global solution.

The attitude unknowns are represented by three parameters
for each frame, viz., the translations along the axes of the detec-
tor and rotation around the boresight vector. These unknowns are
eliminated frame by frame, reducing the number of conditions
by three. The instrument calibration unknowns are represented
in these simulations by sets of up to 28 Zernike polynomials of
field coordinates, separately for either coordinate in the detector
plane. The first Zernike polynomials, which are constant, are
excluded to avoid deficiency of rank, because they are indistin-
guishable from the attitude translations. In our simplified sim-
ulations, the calibration parameters are assumed to be constant
within calibration blocks of equal length. Usually, blocks of 92
or 96 consecutive frames are used, corresponding to roughly 50
minutes of uninterrupted observations. As soon as a complete
calibration block is collected, the QR factorization is applied,
and the remaining astrometric equations are pre-multiplied with
QT , as well as the right-hand side. The number of condition
equations is further reduced by 2 NZ for each calibration block,
with NZ being the number of calibration parameters. This algo-
rithm allows us to include a set of global parameters, which do
not vary with time, such as the parameterized post-Newtonian
γ -parameter. The accuracy or precision of global parameters
can be reliably estimated, because they are mostly correlated
with the low-order components. The number of vector spherical
unknowns is 2(NV + 1)2 − 2, where NV is the limiting degree,
and the number of scalar spherical harmonics (for parallax) is
(NV + 1)2.

3.1. Accidental Errors

The statistical properties of accidental correlated errors are
defined by the global covariance matrix of the coefficients of
spherical harmonics. The diagonal of the covariance matrix at
NV = 7 includes 126 vector spherical harmonic coefficients for
positions and proper motions each and 64 scalar spherical har-
monic coefficients for parallax. The square roots of the portions
of the diagonal corresponding to each astrometric parameter
are the standard deviations of error of unit weight, represented
by a particular harmonic. For example, the standard deviation
of the parallax zero-point error is the standard deviation of the

first spherical harmonic coefficient multiplied by the weighted
average single measurement precision of stars and quasars.
Figures 2(a) and (b) show the standard deviations of harmonic
errors of proper motions and parallax, respectively, obtained
from a typical simulation of JMAPS mission. Generally, we find
that the correlated errors in all three parameters fairly rapidly
decline with the degree of spherical harmonic. To use an analogy
from spectroscopy, in that sense, the spectrum of accidental er-
rors is “red.” There are some obvious “spectral lines,” however,
which are caused by the observing pattern and the distribution
of reference quasars on the sky.

We find that the distribution of accidental error becomes flat-
ter with a significantly larger number of grid quasars. The rela-
tive height of the “spectral lines” depends on the distribution of
grid quasars on the sky and the composition of the calibration
model. Large holes in the distribution of quasars cause consid-
erable degradation of the overall performance. Using the near-
orthogonality of the discretized spherical function, the variance
of accidental error of, e.g., proper motion at a given point (λ, β)
can be estimated as

var[μ(λ, β)] �
∑

j

var
[
Mj

] ‖Vj (λ, β)‖2

=
∑

j

Cμ,jj‖Vj (λ, β)‖2, (7)

where Cμ is the corresponding part of the covariance matrix.
Since this decomposition is limited to a finite set of spherical
functions, only a lower bound of the total error can be obtained.
Still, the distribution of the error carried by the lower-order
harmonics is very informative. For example, one can estimate
the degree of inhomogeneity of the correlated error on the
celestial sphere, which can be significant for JMAPS. Figure 3
depicts the distribution of the standard deviation of the total
accidental error of parallax, which is contained in the first 64
scalar spherical harmonics. The plot is rotated into the Galactic
coordinate system to emphasize the impact of the zone of
avoidance around the Galactic plane where quasars brighter
than 15 mag cannot be found. The quasars, which were used to
constrain the global solution for parallax, are shown as black
dots. The build-up of error in the areas devoid of grid quasars
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Figure 3. Sky distribution of the standard deviation of parallax unit weight
error for a simulated JMAPS mission. The reference quasars used to constrain
the parallax solution are marked with black dots.

is quite obvious. As a way of improving the overall mission
performance, fainter quasars should be found near the Galactic
plane and included in the grid.

It should be noted that the distribution in Figure 3 corresponds
to the expectancy of the spatially correlated error rather than to
the outcome of a single mission. In other words, it shows what
would emerge if the same mission is simulated many times with
random noise in the input data, and the sample variance of the
resulting errors is computed at each point. A single random
realization of correlated error can be computed by

δμ(λ, β) = (
C1/2

μ r
)T

V(λ, β) (8)

with C1/2
μ being the unique positive definite matrix square root of

Cμ, r a random vector drawn from N (0, 1/NV ) of NV elements,
and V(λ, β) the column vector of the values Vj (λ, β). These
transformations are performed separately for each coordinate
direction for the vector-valued parameters (position and proper
motion).

3.2. Systematic Errors

Systematic errors of global solutions are much harder to pre-
dict and analyze because there are multiple sources of such
errors, which are rarely known beforehand. Slowly varying per-
turbations of observational data, caused by external circum-
stances, are of special interest, as they can bring about smooth,
large-scale errors. The orientation of the astrometric satellite
with respect to the direction of the Sun is one of the conceivable
sources of systematic error. The angle between the direction of
the Sun, which is confined to the ecliptic plane, and the viewing
direction changes in a predetermined way, because the entire ce-
lestial sphere should be observed as uniformly as possible. The
thermal flow inevitably changes inside the telescope, resulting
in slowly varying instrument parameters, e.g., the effective fo-
cal length or the basic angle for Gaia. If these variations are
correlated with the celestial coordinates, there is no averaging
out of the perturbation, and the error can propagate into the final
catalog. In many cases, such specific physical influences cannot
be accurately modeled or predicted. A more general modeling

approach can be exploited, where a certain perturbation is rep-
resented as a set of basis functions. For example, a systematic
variation of the basic angle can be represented as a Fourier series
of the sun angle, and each of the Fourier terms can be simulated
separately. The previous studies for Hipparcos and SIM indi-
cate that many such elementary perturbations are benign in that
they cause a relatively small error. There are, however, some
particularly dangerous perturbations, which may propagate into
the final catalog with considerable magnification. Such harmful
systematic effects should be identified and mitigated if possible.
This requires numerous mission simulations with different ini-
tial data, which may not be feasible for the extremely computer-
intensive solutions for millions of individual grid objects. The
proposed technique is fast enough to be used for massive sim-
ulations of slowly varying systematic perturbations, when the
emerging astrometric error is confined to the lower degrees of
spherical harmonics.

Figure 4 shows the results of a specific simulation for JMAPS,
where a perturbation in the field-dependent calibration param-
eter Z2 was injected in the observational data, but not fitted
out in the global solution. The term Z2 (second Zernike poly-
nomial) corresponds to the differential scale of the instrument.
The magnitude of the perturbation was normalized to 1 mas at
the edge of the field of view. The simulated observations (X and
Y measurements) were free of random noise, to see more clearly
the emerging pattern of the correlated error. The absolute error
in the coefficients of 64 lower-order spherical harmonics is de-
picted in Figure 4(a). The spectrum of the error is dominated by
the harmonic number 7 (which is U 0

2 ), followed by harmonic
19 (U−2

4 ) and so on. The total absolute error of parallax at a
given point is the sum of all spherical harmonic errors. The
total error in the first 64 harmonics is depicted in Figure 4(b).
It shows that the simulated perturbation is one of the harmful
errors for JMAPS, because it compounds to a perturbation of
up to 2.6 mas in some parts of the sky, which is larger than
the initial magnitude. Clearly, the distribution of constraining
quasars, shown with black dots, plays a major role in the prop-
agation of this systematic error, which compounds to larger
values in the areas where the quasars are few. If the calibration
term Z2 is included in the set of fitting parameters in the global
solution, the emerging error is zero in the absence of random
noise.

4. CONCLUSIONS

We developed a method to investigate the properties of very
large astrometric solutions, which involve unknown parameters
for millions of celestial sources, as well as millions of nuisance
unknowns. The method is based on a stepwise elimination of
the attitude and calibration unknowns and the replacement of
individual astrometric corrections with their expansions in or-
thogonal spherical functions of celestial coordinates. This ap-
proach works well for the JMAPS and SIM missions and could
potentially be useful for Hipparcos and Gaia. However, demon-
strating the applicability of the method to Hipparcos-like mis-
sions would require considerable adjustments, mostly related to
the dynamic character of attitude parameters, which is beyond
the scope of this paper. In particular, fitting a set of dynamic
parameters for each extended interval of uninterrupted rotation
may render the proposed technique of QR-elimination of the at-
titude unknowns impractical. An additional complication arises
for Gaia, where each of the multiple CCDs in the focal plane re-
quires a separate set of calibration parameters. The pointing, or
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Figure 4. Systematic error of JMAPS parallax resulting from a constant perturbation of the differential scale by 1 mas at the edge of the field of view: (a) in the
coefficients of the first 64 spherical harmonics; (b) on the sky. All values are in mas.

step-stare mode of operation of JMAPS makes it best-suited
for the proposed global solution technique with block-wise
elimination of attitude and calibration parameters, so that com-
plete analysis for realistic sky coverages and observing sched-
ules can be performed for billions of condition equations. The
propagation of zonal and correlated errors of both accidental
and systematic origin can be successfully computed using this
method. When the number of expansion terms is appropriately
small, full mission solutions can be obtained using regular com-
puters within a few hours with more than a hundred million
unknowns. Some applications of the spherical harmonic solu-
tion to the JMAPS mission are described.
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